An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

نویسندگان

  • Guangye Chen
  • Luis Chacón
  • D. C. Barnes
چکیده

Submitted for the APR12 Meeting of The American Physical Society An Energyand Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm in curvilinear geometry1 G. CHEN, L. CHACÓN, Oak Ridge National Laboratory, D.C. BARNES, Coronado Consulting — A recent proof-of-principle study proposes an energyand charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly chargeand energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved. [1] Chen, Chacón, Barnes, J. Comput. Phys. 230 (2011). [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999). 1Work supported by ORNL LDRD Program. Guangye Chen Oak Ridge National Laboratory Date submitted: 03 Jan 2012 Electronic form version 1.4

منابع مشابه

Fluid-Accelerated Nonlinear Algorithms for Multiscale Particle-in-Cell Kinetic Simulation of Electromagnetic Collisionless Plasmas

Collisionless plasmas are described by the Vlasov-Maxwell equations. This set of equations is high-dimensional (spanning three spatial and three velocity dimensions), highly nonlinear, and remarkably multi-scale, supporting disparate time and length scales. These features make its efficient numerical integration extremely challenging. The high-dimensionality of these equations have made particl...

متن کامل

A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Furthermor...

متن کامل

Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations

A recent proof-of-principle study proposes an energy-and charge-conserving, nonlinearly implicit elec-trostatic particle-in-cell (PIC) algorithm in one dimension [Chen et al, The algorithm in the reference employs an unpreconditioned Jacobian-free Newton-Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, whi...

متن کامل

Efficient orbit integration in fully implicit particle-in-cell algorithms

Recently, an implicit, nonlinearly consistent, energyand charge-conserving particle-incell method has been proposed for multi-scale, full-f kinetic electrostatic simulations [1]. The method employs a Jacobian-free Newton–Krylov (JFNK) solver, capable of using very large timesteps of field evolution without loss of numerical stability or accuracy. A fundamental feature of the method is the nonli...

متن کامل

Fully implicit particle-in-cell algorithms for kinetic simulation of plasmas

Particle-in-cell (PIC) simulation techniques have been wildly successful in the firstprinciples simulation of plasma dynamics. However, the fundamental algorithmic underpinnings of standard PIC algorithms have not changed in decades. Classical PIC employs an explicit approach (leap-frog) to advance the Vlasov-Poisson system using particles coupled to a grid. Explicit PIC is subject to both temp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011